nonstandard$53604$ - определение. Что такое nonstandard$53604$
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое nonstandard$53604$ - определение

MODERN APPLICATION OF INFINITESIMALS
Nonstandard Calculus; Non-standard calculus

Nonstandard calculus         
In mathematics, nonstandard calculus is the modern application of infinitesimals, in the sense of nonstandard analysis, to infinitesimal calculus. It provides a rigorous justification for some arguments in calculus that were previously considered merely heuristic.
Non-standard model         
MODEL OF A THEORY THAT IS NOT ISOMORPHIC TO THE INTENDED MODEL
Non-standard models; Nonstandard model
In model theory, a discipline within mathematical logic, a non-standard model is a model of a theory that is not isomorphic to the intended model (or standard model).Roman Kossak, 2004 Nonstandard Models of Arithmetic and Set Theory American Mathematical Soc.
Nonstandard analysis         
ALTERNATIVE FORMULATION OF CALCULUS USING A LOGICALLY RIGOROUS NOTION OF INFINITESIMAL NUMBERS
Non standard analysis; Nonstandard complex numbers; Nonstandard Analysis; Non-Standard Analysis; Non-Standard analysis; Non-standard analysis
The history of calculus is fraught with philosophical debates about the meaning and logical validity of fluxions or infinitesimal numbers. The standard way to resolve these debates is to define the operations of calculus using epsilon–delta procedures rather than infinitesimals.

Википедия

Nonstandard calculus

In mathematics, nonstandard calculus is the modern application of infinitesimals, in the sense of nonstandard analysis, to infinitesimal calculus. It provides a rigorous justification for some arguments in calculus that were previously considered merely heuristic.

Non-rigorous calculations with infinitesimals were widely used before Karl Weierstrass sought to replace them with the (ε, δ)-definition of limit starting in the 1870s. (See history of calculus.) For almost one hundred years thereafter, mathematicians such as Richard Courant viewed infinitesimals as being naive and vague or meaningless.

Contrary to such views, Abraham Robinson showed in 1960 that infinitesimals are precise, clear, and meaningful, building upon work by Edwin Hewitt and Jerzy Łoś. According to Howard Keisler, "Robinson solved a three hundred year old problem by giving a precise treatment of infinitesimals. Robinson's achievement will probably rank as one of the major mathematical advances of the twentieth century."